Part Number Hot Search : 
DG445 MBT440 74LVC MZT2975 74LVC IS0515SA MLX90240 32000
Product Description
Full Text Search
 

To Download IR21303C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60223 rev.A
IR21303C
3-PHASE BRIDGE DRIVER
Features
* Floating channel designed for bootstrap operation * * * * * * * *
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 11.1 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for all channels 2.5V logic compatible Outputs out of phase with inputs Cross-conduction prevention logic
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 200 mA / 420 mA 11.1 - 20V 675 & 425 ns 600 ns
Description
The IR21303C is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.
Typical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR21303C
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Symbol
V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS V LO1,2,3 VIN
Definition
High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP)
Min.
Max.
Units
VFLT VCAO VCAdVS/dt TJ
FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient Junction Temperature
-0.3 625 VB1,2,3 - 25 VB1,2,3 + 0.3 VS1,2,3 - 0.3 VB1,2,3 + 0.3 -0.3 25 VCC - 25 VCC + 0.3 -0.3 VCC + 0.3 VSS - 0.3 (VSS + 15) or (VCC + 0.3) whichever is lower VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 -- 50 -- 150
V
V/ns C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
Symbol
V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCATA
Definition
High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Ambient Temperature
Min.
Max.
Units
VS1,2,3 + 13.3 VS1,2,3 + 20 Note 1 600 V S1,2,3 V B1,2,3 13.3 20 -5 5 0 VCC VSS VSS + 5 VSS VCC VSS VSS + 5 VSS VSS + 5 -40 125
V
C
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR21303C
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5.
Symbol
ton toff tr tf titrip tbl tflt tflt,in t fltclr DT SR+ SR-
Definition
Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to FAULT Indication Delay Input Filter Time (All Six Inputs) LIN1,2,3 & HIN1,2,3 to FAULT Clear Time Deadtime Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-)
Figure Min. Typ. Max. Units Test Conditions
11 12 13 14 15 -- 16 -- 17 -- 18 19 450 300 -- -- 400 -- 335 -- 6.0 300 4.4 2.4 675 425 80 35 660 400 590 310 9.0 600 6.2 3.2 850 550 125 55 920 -- 845 -- 12.0 900 -- -- VIN = 0 & 5V VS1,2,3 = 0 to 600V VIN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V
ns
ns V/s
NOTE: For high side PWM, HIN pulse width must be 1.5sec
Static Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
VIH V IL VIT,TH+ VOH VOL ILK I QBS IQCC IIN+ IINIITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT
Definition
Logic "0" Input Voltage (OUT = LO) Logic "1" Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current (OUT = HI) Logic "0" Input Bias Current (OUT = LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance
Figure Min. Typ. Max. Units Test Conditions
20 21 -- 22 23 24 25 26 27 28 29 30 -- -- -- -- 31 2.2 -- 436.8 -- -- -- -- -- -- -- -- -- 10.8 9 10.8 9.0 -- -- -- 480 -- -- -- 15 3.0 450 225 75 -- 12 10 12 10 55 -- 0.8 529.2 100 100 50 30 4.0 650 400 150 100 13.2 11 13.2 11 75 V V
mV A mA A nA
VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V
www.irf.com
3
IR21303C
Static Electrical Characteristics -- Continued
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
IO+ IOVOS ICACMRR PSRR VOH,AMP VOL,AMP ISRC,AMP I SINK,AMP IO+,AMP IO-,AMP
Definition
Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current Op. Amp. Output Sink Current Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Short Circuit Current
Figure Min. Typ. Max. Units Test Conditions
32 33 -- 34 35 36 37 38 39 40 41 42 200 420 -14 -- 60 55 5.0 -- 2.3 1.0 -- -- 250 500 -- -- 80 75 5.2 -- 4.0 2.1 4.5 3.2 -- -- 14 4.0 -- -- 5.4 20 -- -- mA 6.5 5.2 mA mV nA dB V mV VO = 0V, VIN = 0V PW 10 s VO = 15V, VIN = 5V PW 10 s VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 14V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V
Lead Definitions
Symbol
HIN1,2,3 LIN1,2,3 FAULT VCC ITRIP CAO CAVSS VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 VS0 4
Description
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply Input for over-current shutdown Output of current amplifier Negative input of current amplifier Logic ground High side floating supplies High side gate drive outputs High side floating supply returns Low side gate drive outputs Low side return and positive input of current amplifier www.irf.com
IR21303C
Pad Assignments
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 Vcc1 HIN 1 HIN 2 HIN 3 LIN 1 LIN 2 LIN 3 FAULT ITRIP CAO CAVSS VS0 Pin # 14 15 16 18 19 20 22 23 24 26 27 28 LO 3 LO 2 LO 1 VS 3 HO 3 VB 3 VS 2 HO 2 VB 2 VS 1 HO 1 VB 1
www.irf.com
5
IR21303C
Functional Block Diagram
CLEAR
6
www.irf.com
IR21303C
HIN1,2,3
LIN1,2,3
ITRIP FAULT
<50 V/ns
HO1,2,3 LO1,2,3
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN1,2,3
HIN1,2,3 LIN1,2,3
50% 50% 50% 50%
LIN1,2,3
ton tr 90% 50% 50% toff 90% tf
LO1,2,3
HO1,2,3
DT DT
HO1,2,3 LO1,2,3
10%
10%
Figure 3. Deadtime Waveform Definitions
Figure 4. Input/Output Switching Time Waveform Definitions
www.irf.com
7
IR21303C
50%
LIN1,2,3
50%
ITRIP
FAULT
50%
50%
LO1,2,3
50% tflt titrip tfltclr
Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions
HIN/LIN
on off high
on
off
on off
HO/LO
low
Figure 5.5 Input Filter Function
VCC + VSS CAO
VS0 CA-
VSS
Figure 6. Diagnostic Feedback Operational Amplifier Circuit
8
U
t in,fil
t in,fil
www.irf.com
IR21303C
3V 0V
15V VCC CAVS0 + CAO VSS 50 pF
15V VS0 CA+ VSS
+
VCC CAO
20k 1k
T1 3V V 0V 10% 90%
T2
0.2V
SR+ =
V T1
SR- =
V T2
VOS =
VCAO 21
- 0.2V
Figure 7. Operational Amplifier Slew Rate Measurement
Figure 8. Operational Amplifier Input Offset Voltage Measurement
VCC
15V VCC CAVS0 + VSS
0.2V
VS0 CA-
+ VSS CAO
CAO
+
20k 1k
Measure VCAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V CMRR = -20*LOG (VCAO1-0.1V) - (VCAO2-5V) 4.9V (dB)
Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V PSRR = -20*LOG VCAO1 - VCAO2 (10V) (21)
Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements
Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements
www.irf.com
9
IR21303C
1.50 1.50
1.20 Turn-On Delay Time (s)
Max.
1.20 Turn-On Delay Time (s)
0.90
Typ.
0.90
Max.
Typ.
0.60
Min.
0.60
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 11A. Turn-On Time vs. Temperature
Figure 11B. Turn-On Time vs. Supply Voltage
1.50 Max 1.20
Turn-On Time (s)
1.00
0.80 Turn-Off Delay Time (s)
Typ. 0.90 0.60 0.30 0.00 0 1 2 3
Input Voltage (V)
0.60
Max.
0.40
Typ.
Min.
0.20
0.00
4
5
6
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 11C. Turn-On Time vs. Voltage
1.00
Figure 12A. Turn-Off Time vs. Temperature
1.50 1.20
Turn-Off Time (s)
0.80 Turn-Off Delay Time (s)
0.60
Max.
0.90 Max 0.60 Typ 0.30 0.00 Min.
Typ.
0.40
Min.
0.20
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0
1
2
3
4
5
6
Input Voltage (V)
Figure 12B. Turn-Off Time vs. Supply Voltage
Figure 12C. Turn-Off Time vs. Input Voltage
10
www.irf.com
IR21303C
250 250
200 Turn-On Rise Time (ns) Turn-On Rise Time (ns)
200
Max.
150
150
100
Max.
100
Typ.
Typ.
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 13A. Turn-On Rise Time vs. Temperature
125
Figure 13B. Turn-On Rise Time vs. Voltage
125
100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns)
100
75
75
Max.
50
Max. Typ.
50
Typ.
25
25
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 14A. Turn-Off Fall Time vs. Temperature
Figure 14B. Turn-Off Fall Time vs. Voltage
1.50 ITRIP to Output Shutdown Delay Time (s) ITRIP to Output Shutdown Delay Time (s)
1.50
1.20
Max.
1.20
Max.
0.90
Typ.
0.90
Typ.
0.60
Min.
0.60
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 15A. ITRIP to Output Shutdown Time vs. Temperature
Figure 15B. ITRIP to Output Shutdown Time vs. Voltage
www.irf.com
11
IR21303C
1.50 ITRIP to FAULT Indication Delay Time (s) ITRIP to FAULT Indication Delay Time (s) 1.50
1.20
Max.
1.20
0.90
Typ.
0.90
Max.
0.60
Min.
0.60
Typ.
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 16A. ITRIP to FAULT Indication Time vs. Temperature
25.0
Figure 16B. ITRIP to FAULT Indication Time vs. Voltage
25.0
LIN1,2,3 to FAULT Clear Time (s)
LIN1,2,3 to FAULT Clear Time (s)
20.0
20.0
15.0
Max.
15.0
Max.
10.0
Typ. Min.
10.0
Typ. Min.
5.0
5.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 17A. LIN1,2,3 & HIN1,2,3 to FAULT Clear Time vs. Temperature
10.0
Figure 17B. LIN1,2,3 , HIN1,2,3 to FAULT Clear Time vs. Voltage
10.0
8.0 Amplifier Slew Rate + (V/s)
Typ.
8.0 Amplifier Slew Rate + (V/s)
Typ.
6.0
Min.
6.0
Min.
4.0
4.0
2.0
2.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 18A. Amplifier Slew Rate (+) vs. Temperature
Figure 18B. Amplifier Slew Rate (+) vs. Voltage
12
www.irf.com
IR21303C
5.00 5.00
4.00 Amplifier Slew Rate - (V/s) Amplifier Slew Rate - (V/s)
Typ.
4.00
Typ.
3.00
Min.
3.00
Min.
2.00
2.00
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 19A. Amplifier Slew Rate (-) vs. Temperature
5.00
Figure 19B. Amplifier Slew Rate (-) vs. Voltage
5.00
4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V)
4.00
3.00
Min.
3.00
Min.
2.00
2.00
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 20A. Logic "0" Input Threshold vs. Temperature
5.00
Figure 20B. Logic "0" Input Threshold vs. Voltage
5.00
4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V)
Max.
4.00
3.00
3.00
2.00
2.00
1.00
1.00
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 21A. Logic "1" Input Threshold vs. Temperature
Figure 21B. Logic "1" Input Threshold vs. Voltage
www.irf.com
13
IR21303C
1.00 1.00
0.80 High Level Output Voltage (V) High Level Output Voltage (V)
Max.
0.80
0.60
0.60
0.40
0.40
0.20
0.20
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 22A. High Level Output vs. Temperature
1.00
Figure 22B. High Level Output vs. Voltage
1.00
0.80 Low Level Output Voltage (V) Low Level Output Voltage (V)
Max.
0.80
0.60
0.60
0.40
0.40
0.20
0.20
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 23A. Low Level Output vs. Temperature
Figure 23B. Low Level Output vs. Voltage
500
500
Offset Supply Leakage Current (A)
Offset Supply Leakage Current (A)
400
400
300
300
200
200
100
Max.
100
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 0 100 200 300 400 500 600 VB Boost Voltage (V)
Figure 24A. Offset Supply Leakage Current vs. Temperature
Figure 24B. Offset Supply Leakage Current vs. Voltage
14
www.irf.com
IR21303C
100 100
80 VBS Supply Current (A) VBS Supply Current (A)
Max.
80
60
60
40
40
20
Typ.
20
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0
Typ.
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 25A. VBS Supply Current vs. Temperature
10.0
Figure 25B. VBS Supply Current vs. Voltage
10.0
8.0 VCC Supply Current (mA) VCC Supply Current (mA)
8.0
6.0
6.0
4.0
Max. Typ.
4.0
Max.
2.0
2.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 26A. VCC Supply Current vs. Temperature
Figure 26B. VCC Supply Current vs. Voltage
1.25
1.25
Logic "1" Input Bias Current (mA)
0.75
Logic "1" Input Bias Current (mA)
1.00
1.00
0.75
0.50
Max. Typ.
0.50
Max. Typ.
0.25
0.25
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 27A. Logic "1" Input Current vs. Temperature
Figure 27A. Logic "1" Input Current vs. Voltage
www.irf.com
15
IR21303C
1.25 1.25
Logic "0" Input Bias Current (mA)
0.75
Logic "0" Input Bias Current (mA)
1.00
1.00
0.75
0.50
Max.
0.50
0.25
Typ.
0.25
Max. Typ.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 28A. Logic "0" Input Current vs. Temperature
Figure 28B. Logic "0" Input Current vs. Voltage
500
500
"High" ITRIP Bias Current (A)
400 "High" ITRIP Bias Current (A)
400
300
300
200
Max.
200
Max.
100
Typ.
100
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 29A. "High" ITRIP Current vs. Temperature
250
Figure 29B. "High" ITRIP Current vs. Voltage
500
200 "Low" ITRIP Bias Current (A) "Low" ITRIP Bias Current (nA)
400
150
300
100
Max.
200
Max.
50
100
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 30A. "Low" ITRIP Current vs. Temperature
Figure 30B. "Low" ITRIP Current vs. Voltage
16
www.irf.com
IR21303C
250 250
FAULT- Low On Resistance (ohms)
150
FAULT- Low On Resistance (ohms)
200
200
150
100
Max. Typ.
100
Max. Typ.
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 31A. FAULT Low On Resistance vs. Temperature
500
Figure 31B. FAULT Low On Resistance vs. Voltage
500
400 Output Source Current (mA) Output Source Current (mA)
400
300
Typ. Min.
300
200
200
Typ.
100
100
Min.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 32A. Output Source Current vs. Temperature
750
Figure 32B. Output Source Current vs. Voltage
750 625 Output Sink Current (mA) 500 375
Typ.
600 Output Sink Current (mA)
Typ. Min.
450
300
250
Min.
150
125 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V)
0
Figure 33A. Output Sink Current vs. Temperature
Figure 33B. Output Sink Current vs. Voltage
www.irf.com
17
IR21303C
10.0 10.0
8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA)
8.0
6.0
Max.
6.0
Max.
4.0
4.0
2.0
2.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 34A. CA- Input Current vs. Temperature
Figure 34B. CA- Input Current vs. Voltage
100
100
Typ.
80 Amplifier CMRR (dB)
Typ.
80 Amplifier CMRR (dB)
60
Min.
60
Min.
40
40
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 35A. Amplifier CMRR vs. Temperature
100 100
Figure 35B. Amplifier CMRR vs. Voltage
80
Typ.
80 Amplifier PSRR (dB)
Typ.
Amplifier PSRR (dB)
60
Min.
60
Min.
40
40
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 36A. Amplifier PSRR vs. Temperature
Figure 36B. Amplifier PSRR vs. Voltage
18
www.irf.com
IR21303C
6.00 6.00
Amplifier High Level Output Voltage (V)
5.70
Amplifier High Level Output Voltage (V)
5.70
5.40
Max. Typ.
5.40
Max.
Typ.
5.10
Min.
5.10
Min.
4.80
4.80
4.50 -50 -25 0 25 50 75 100 125 Temperature (C)
4.50 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 37A. Amplifier High Level Output vs. Temperature
100 Amplifier Low Level Output Voltage (mV)
Figure 37B. Amplifier High Level Output vs. Voltage
100 Amplifier Low Level Output Voltage (mV)
80
80
60
60
40
Max.
40
Max.
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 38A. Amplifier Low Level Output vs. Temperature
10.0
Figure 38B. Amplifier Low Level Output vs. Voltage
10.0
Amplifier Output Source Current (mA)
Amplifier Output Source Current (mA)
8.0
8.0
6.0
Typ.
6.0
4.0
Min.
4.0
Typ.
2.0
2.0
Min.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 39A. Amplifier Output Source Current vs. Temperature
Figure 39B. Amplifier Output Source Current vs. Voltage
www.irf.com
19
IR21303C
5.00 5.00
Amplifier Output Sink Current (mA)
Amplifier Output Sink Current (mA)
4.00
4.00
3.00
Typ.
3.00
2.00
Min.
2.00
Typ.
1.00
1.00
Min.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 40A. Amplifier Output Sink Current vs. Temperature
15.0
Figure 40B. Amplifier Output Sink Current vs. Voltage
15.0
Output High Short Circuit Current (mA)
12.0
Output High Short Circuit Current (mA)
12.0
9.0
Max.
9.0
6.0
Typ.
6.0
Max.
3.0
3.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 41A. Amplifier Output High Short Circuit Current vs. Temperature
15.0
Figure 41B. Amplifier Output High Short Circuit Current vs. Voltage
15.0
Output Low Short Circuit Current (mA)
Output Low Short Circuit Current (mA)
12.0
12.0
9.0
9.0
6.0
Max.
6.0
Max.
Typ.
3.0
3.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 42A. Amplifier Output Low Short Circuit Current vs. Temperature
Figure 42B. Amplifier Output Low Short Circuit Current vs. Voltage
20
www.irf.com
IR21303C
0.0
-3.0 VS Offset Supply Voltage (V)
Typ.
-6.0
-9.0
-12.0
-15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
Figure 4-3. Maximum VS Negative Offset vs. VBS Supply Voltage
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. 10/5/2004
www.irf.com
21


▲Up To Search▲   

 
Price & Availability of IR21303C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X